The determinant is given by:
\[ D = \left| \begin{matrix} 1 & 1 & \sqrt{3} \\ -1 & \tan \theta & \sqrt{7} \\ 1 & 1 & \tan \theta \end{matrix} \right| = 0 \]
Simplifying the determinant expression: \[ \tan^2 \theta - (\sqrt{3} - 1) - \sqrt{3} = 0 \]
Solving for \( \tan \theta \): \[ \tan \theta = \sqrt{3}, -1 \]
Therefore, the possible values for \( \theta \) are: \[ \theta = \left\{ \frac{\pi}{3}, -\frac{2\pi}{3}, -\frac{\pi}{4}, \frac{3\pi}{4} \right\} \]
Now, calculating the sum of angles: \[ \frac{120}{\pi} \left( \sum \theta \right) = \frac{120}{\pi} \times \frac{\pi}{6} = 20 \quad (\text{Option 2}) \]
The obtuse angle between lines \(2y = x + 1\) and \(y = 3x + 2\) is:
What is the general solution of the equation \( \cot\theta + \tan\theta = 2 \)?
Consider the following reaction occurring in the blast furnace. \[ {Fe}_3{O}_4(s) + 4{CO}(g) \rightarrow 3{Fe}(l) + 4{CO}_2(g) \] ‘x’ kg of iron is produced when \(2.32 \times 10^3\) kg \(Fe_3O_4\) and \(2.8 \times 10^2 \) kg CO are brought together in the furnace.
The value of ‘x’ is __________ (nearest integer).
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]
X g of benzoic acid on reaction with aqueous \(NaHCO_3\) release \(CO_2\) that occupied 11.2 L volume at STP. X is ________ g.
Standard entropies of \(X_2\), \(Y_2\) and \(XY_5\) are 70, 50, and 110 J \(K^{-1}\) mol\(^{-1}\) respectively. The temperature in Kelvin at which the reaction \[ \frac{1}{2} X_2 + \frac{5}{2} Y_2 \rightarrow XY_5 \quad \Delta H = -35 \, {kJ mol}^{-1} \] will be at equilibrium is (nearest integer):
37.8 g \( N_2O_5 \) was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K: \[ 2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g) \]
The total pressure at equilibrium was found to be 18.65 bar. Then, \( K_p \) is: Given: \[ R = 0.082 \, \text{bar L mol}^{-1} \, \text{K}^{-1} \]