Two radioactive elements A and B initially have the same number of atoms. The half-life of A is the same as the average life of B. If \( \lambda_A \) and \( \lambda_B \) are the decay constants of A and B respectively, then choose the correct relation from the given options:
\( \lambda_A = 2\lambda_B \)
\( \lambda_A = \lambda_B \)
\( \lambda_A \ln 2 = \lambda_B \)
\( \lambda_A = \lambda_B \ln 2 \)
We are given that the half-life of A is the same as the average life of B. The average life \( \tau \) and half-life \( T \) are related to the decay constant \( \lambda \) by the equations: \[ T = \frac{\ln 2}{\lambda} \quad \text{and} \quad \tau = \frac{1}{\lambda} \] Since the half-life of A is the same as the average life of B, we have: \[ \lambda_A = \lambda_B \ln 2 \] Hence, the correct relation is \( \lambda_A = \lambda_B \ln 2 \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: