Two radioactive elements A and B initially have the same number of atoms. The half-life of A is the same as the average life of B. If \( \lambda_A \) and \( \lambda_B \) are the decay constants of A and B respectively, then choose the correct relation from the given options:
\( \lambda_A = 2\lambda_B \)
\( \lambda_A = \lambda_B \)
\( \lambda_A \ln 2 = \lambda_B \)
\( \lambda_A = \lambda_B \ln 2 \)
We are given that the half-life of A is the same as the average life of B. The average life \( \tau \) and half-life \( T \) are related to the decay constant \( \lambda \) by the equations: \[ T = \frac{\ln 2}{\lambda} \quad \text{and} \quad \tau = \frac{1}{\lambda} \] Since the half-life of A is the same as the average life of B, we have: \[ \lambda_A = \lambda_B \ln 2 \] Hence, the correct relation is \( \lambda_A = \lambda_B \ln 2 \).

\[ f(x) = \left\{ \begin{array}{ll} 1 - 2x & \text{if } x < -1 \\ \frac{1}{3}(7 + 2|x|) & \text{if } -1 \leq x \leq 2 \\ \frac{11}{18} (x-4)(x-5) & \text{if } x > 2 \end{array} \right. \]