Two radioactive elements A and B initially have the same number of atoms. The half-life of A is the same as the average life of B. If \( \lambda_A \) and \( \lambda_B \) are the decay constants of A and B respectively, then choose the correct relation from the given options:
\( \lambda_A = 2\lambda_B \)
\( \lambda_A = \lambda_B \)
\( \lambda_A \ln 2 = \lambda_B \)
\( \lambda_A = \lambda_B \ln 2 \)
We are given that the half-life of A is the same as the average life of B. The average life \( \tau \) and half-life \( T \) are related to the decay constant \( \lambda \) by the equations: \[ T = \frac{\ln 2}{\lambda} \quad \text{and} \quad \tau = \frac{1}{\lambda} \] Since the half-life of A is the same as the average life of B, we have: \[ \lambda_A = \lambda_B \ln 2 \] Hence, the correct relation is \( \lambda_A = \lambda_B \ln 2 \).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to