If \( \alpha \) and \( \beta \) are non-real numbers satisfying \( x^3 - 1 = 0 \), then the value of \[ \left| \begin{matrix} \lambda+1 & \alpha & \beta \\ \beta & \lambda + \beta & 1 \\ 1 & \lambda + \alpha & \lambda + \alpha \end{matrix} \right| \] is:
Choose the most appropriate options.If \( A(2,3) \) and \( B(-2,1) \) are two vertices of a triangle and the third vertex moves on the line \( 2x + 3y = 9 \), then the locus of the centroid of the new set of observations will be the triangle is
The inverse of matrix \[ \begin{pmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\3 & -3 & 4 \end{pmatrix} \] is
Let $x_1$ and $x_2$ be the roots of the equation $ax^2 + bx + c = 0$ ($ac \neq 0$). Find the value of $\frac{1}{x_1} + \frac{1}{x_2}$.