If \[ f(x) = \begin{cases} \frac{1 - \sin x}{(n - 2x)^2} & \text{if} \quad x \neq \frac{\pi}{2} \log (\sin x) \cdot \log \left( 1 + \frac{\pi}{4x + x^2} \right) & \text{if} \quad x = \frac{\pi}{2} \end{cases} \] is continuous at \( x = \frac{\pi}{2} \), then \( k \) is equal to
Which of the following is an octal number equal to decimal number \((896)_{10}\)?
The additional 8% human genome sequenced account for ........ million new letters added to the existing sequenced DNA.