Calculate
\[ \begin{vmatrix} x & y & x + y \\ y & x + y & x \\ x + y & x & y \end{vmatrix} \]
Using the formula for a 3×3 determinant:
\[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg) \]
Applying this to our matrix:
\[ \begin{aligned} &\begin{vmatrix} x & y & x + y \\ y & x + y & x \\ x + y & x & y \end{vmatrix} \\ &= x\left[(x + y)(y) - (x)(x)\right] \\ &\quad - y\left[y(y) - (x)(x + y)\right] \\ &\quad + (x + y)\left[y(x) - (x + y)(x + y)\right] \\ &= x(xy + y^2 - x^2) \\ &\quad - y(y^2 - x^2 - xy) \\ &\quad + (x + y)(xy - x^2 - 2xy - y^2) \\ &= x^2y + xy^2 - x^3 - y^3 + x^2y + xy^2 \\ &\quad - x^3 - 2x^2y - 2xy^2 - y^3 \\ &= -2x^3 - 2y^3 \\ &= -2(x^3 + y^3) \end{aligned} \]
The correct answer is \(\boxed{c}\) \(-2(x^3 + y^3)\).
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
Which of the following is an octal number equal to decimal number \((896)_{10}\)?