Calculate
\[ \begin{vmatrix} x & y & x + y \\ y & x + y & x \\ x + y & x & y \end{vmatrix} \]
Using the formula for a 3×3 determinant:
\[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg) \]
Applying this to our matrix:
\[ \begin{aligned} &\begin{vmatrix} x & y & x + y \\ y & x + y & x \\ x + y & x & y \end{vmatrix} \\ &= x\left[(x + y)(y) - (x)(x)\right] \\ &\quad - y\left[y(y) - (x)(x + y)\right] \\ &\quad + (x + y)\left[y(x) - (x + y)(x + y)\right] \\ &= x(xy + y^2 - x^2) \\ &\quad - y(y^2 - x^2 - xy) \\ &\quad + (x + y)(xy - x^2 - 2xy - y^2) \\ &= x^2y + xy^2 - x^3 - y^3 + x^2y + xy^2 \\ &\quad - x^3 - 2x^2y - 2xy^2 - y^3 \\ &= -2x^3 - 2y^3 \\ &= -2(x^3 + y^3) \end{aligned} \]
The correct answer is \(\boxed{c}\) \(-2(x^3 + y^3)\).
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
Which of the following is an octal number equal to decimal number \((896)_{10}\)?