Calculate
\[ \begin{vmatrix} x & y & x + y \\ y & x + y & x \\ x + y & x & y \end{vmatrix} \]
If \[ f(x) = \begin{cases} \frac{1 - \sin x}{(n - 2x)^2} & \text{if} \quad x \neq \frac{\pi}{2} \log (\sin x) \cdot \log \left( 1 + \frac{\pi}{4x + x^2} \right) & \text{if} \quad x = \frac{\pi}{2} \end{cases} \] is continuous at \( x = \frac{\pi}{2} \), then \( k \) is equal to
The inverse of matrix \[ \begin{pmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\3 & -3 & 4 \end{pmatrix} \] is
Choose the most appropriate option. If \( A \) is a square matrix such that \( A^2 = A \) and \( B = I \), then \( AB + BA + I - (I - A)^2 \) is equal to:
Choose the most appropriate option. The value of \(\lim_{x \to a} \frac{\log x - 1}{x - a}\) is equal to
Choose the most appropriate options. If \( |z^2 - 1| = |z|^2 + 1 \), then \( z \) lies on a
Choose the most appropriate options. If \( f(x) = [x \sin n\pi x] \), then which of the following is incorrect?
Choose the most appropriate option. Find the distance from the point A (2, 3, -1) to the given straight line. \[ x = 3t + 5, \quad y = 2t, \quad z = -2t - 25 \]
Choose the most appropriate options. The degree of the differential equation \[ x = 1 + \frac{dy}{dx} + \frac{1}{2!} \left( \frac{d^2y}{dx^2} \right) + \frac{1}{3!} \left( \frac{d^3y}{dx^3} \right) + ... \]
Choose the most appropriate option. On the sphere \( (x - 1)^2 + (y + 2)^2 + (z - 3)^2 = 25 \), find the point \( M_0 \) to the plane \( 3x - 4z + 19 \).
Choose the most appropriate options. The limit \[ \lim_{x \to 0} \frac{1 - \cos 2x}{x \tan 4x} \]
Choose the most appropriate options.If \( A(2,3) \) and \( B(-2,1) \) are two vertices of a triangle and the third vertex moves on the line \( 2x + 3y = 9 \), then the locus of the centroid of the new set of observations will be the triangle is
\[ \lim_{x \to 0} \frac{\ln \cos 2x}{\sin 2x} \]
Choose the most appropriate options. Let \( f(x) = ax^3 + 5x^2 - bx + 1 \). If when divided by \( x - 1 \) it leaves a remainder of 5, and \( f(x) \) is divisible by \( 3x - 1 \), then
Choose the most appropriate options. If the SD of a set of observations is 8 and each observation is divided by -2, then the SD of the new set of observation will be: