Step 1: Understanding negation.
The original statement uses universal quantifiers (“for every \(x\)”, “for every \(\varepsilon>0\)”...) and existential quantifiers (“there exists \(N\)”).
Negation interchanges these quantifiers.
Step 2: Negating logically.
Negation of
\[
\forall x \, \forall \varepsilon>0 \, \exists N \, \forall p: P(x, \varepsilon, N, p)
\]
is
\[
\exists x \, \exists \varepsilon>0 \, \forall N \, \exists p: \neg P(x, \varepsilon, N, p).
\]
That matches option (C).
Step 3: Conclusion.
Hence, option (C) correctly expresses the negation.