Step 1: Identify the matrix form of \(A.\)
\(A\) is the cyclic right-shift operator on \(\mathbb{C}^n\).
Its matrix representation is
\[
A =
\begin{pmatrix}
0 & 0 & 0 & \cdots & 1
1 & 0 & 0 & \cdots & 0
0 & 1 & 0 & \cdots & 0
\vdots & & \ddots & \ddots & \vdots
0 & 0 & \cdots & 1 & 0
\end{pmatrix}.
\]
Step 2: Characteristic polynomial and eigenvalues.
Since \(A^n = I\), all eigenvalues \(\lambda\) satisfy \(\lambda^n = 1\).
Hence, the eigenvalues are the \(n\)-th roots of unity:
\[
\lambda_k = e^{2\pi i k/n}, \quad k = 0,1,2,\ldots,n-1.
\]
Step 3: Modulus of eigenvalues.
Each eigenvalue satisfies \(|\lambda_k| = 1\).
Therefore, all eigenvalues of \(A\) lie on the unit circle.
Step 4: Conclusion.
Thus, (B) is correct.