Step 1: Parameterize the unit circle.
Let \(x = \cos t,\ y = \sin t,\ 0 \le t \le 2\pi.\)
Then \(dx = -\sin t\,dt,\ dy = \cos t\,dt.\)
Step 2: Substitute in the integral.
\[
P = \frac{\sin t}{1}, \quad Q = \frac{-\cos t}{1}.
\]
Hence,
\[
P\,dx + Q\,dy = (\sin t)(-\sin t\,dt) + (-\cos t)(\cos t\,dt) = -(\sin^2 t + \cos^2 t)\,dt = -dt.
\]
Step 3: Integrate around the circle.
\[
\int_C (P\,dx + Q\,dy) = \int_0^{2\pi} (-dt) = -2\pi.
\]
Step 4: Compute final expression.
\[
\frac{1}{\pi} \int_C (P\,dx + Q\,dy) = \frac{-2\pi}{\pi} = -2.
\]
Step 5: Conclusion.
The required value is \(\boxed{-2}.\)