Consider a frequency-modulated (FM) signal \[ f(t) = A_c \cos(2\pi f_c t + 3 \sin(2\pi f_1 t) + 4 \sin(6\pi f_1 t)), \] where \( A_c \) and \( f_c \) are, respectively, the amplitude and frequency (in Hz) of the carrier waveform. The frequency \( f_1 \) is in Hz, and assume that \( f_c>100 f_1 \). The peak frequency deviation of the FM signal in Hz is _________.
A pot contains two red balls and two blue balls. Two balls are drawn from this pot randomly without replacement. What is the probability that the two balls drawn have different colours?
Consider the following series: (i) \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \) (ii) \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) (iii) \( \sum_{n=1}^{\infty} \frac{1}{n!} \) Choose the correct option.
Consider the matrix \( A \) below: \[ A = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & 0 & \gamma \end{bmatrix} \] For which of the following combinations of \( \alpha, \beta, \) and \( \gamma \), is the rank of \( A \) at least three? (i) \( \alpha = 0 \) and \( \beta = \gamma \neq 0 \). (ii) \( \alpha = \beta = \gamma = 0 \). (iii) \( \beta = \gamma = 0 \) and \( \alpha \neq 0 \). (iv) \( \alpha = \beta = \gamma \neq 0 \).
The equation \[ y'' + p(x)y' + q(x)y = r(x) \] is a _________ ordinary differential equation.
Let \[ A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & k & 0 \\ 3 & 0 & -1 \end{pmatrix}. \] If the eigenvalues of \( A \) are -2, 1, and 2, then the value of \( k \) is _. (Answer in integer)
Let \( a_0 = 0 \) and define \( a_n = \frac{1}{2} (1 + a_{n-1}) \) for all positive integers \( n \geq 1 \). The least value of \( n \) for which \( |1 - a_n|<\frac{1}{2^{10}} \) is ______.
The value of \( k \), for which the linear equations \( 2x + 3y = 6 \) and \( 4x + 6y = 3k \) have at least one solution, is ________. (Answer in integer)