Consider the matrix \( A \) below: \[ A = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & 0 & \gamma \end{bmatrix} \] For which of the following combinations of \( \alpha, \beta, \) and \( \gamma \), is the rank of \( A \) at least three? (i) \( \alpha = 0 \) and \( \beta = \gamma \neq 0 \).
(ii) \( \alpha = \beta = \gamma = 0 \).
(iii) \( \beta = \gamma = 0 \) and \( \alpha \neq 0 \).
(iv) \( \alpha = \beta = \gamma \neq 0 \).
The rank of matrix \(\begin{bmatrix} k & -1 & 0 \\[0.3em] 0 & k & -1 \\[0.3em] -1 & 0 & k \end{bmatrix}\) is 2, for \( k = \)
The rank of the matrix\(\begin{bmatrix} 1 & 1 & 1 \\[0.3em] a & a^2 & a^3 \end{bmatrix}\) is ____ .
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
Two resistors are connected in a circuit loop of area 5 m\(^2\), as shown in the figure below. The circuit loop is placed on the \( x-y \) plane. When a time-varying magnetic flux, with flux-density \( B(t) = 0.5t \) (in Tesla), is applied along the positive \( z \)-axis, the magnitude of current \( I \) (in Amperes, rounded off to two decimal places) in the loop is (answer in Amperes).
A 50 \(\Omega\) lossless transmission line is terminated with a load \( Z_L = (50 - j75) \, \Omega.\) { If the average incident power on the line is 10 mW, then the average power delivered to the load
(in mW, rounded off to one decimal place) is} _________.
In the circuit shown below, the AND gate has a propagation delay of 1 ns. The edge-triggered flip-flops have a set-up time of 2 ns, a hold-time of 0 ns, and a clock-to-Q delay of 2 ns. The maximum clock frequency (in MHz, rounded off to the nearest integer) such that there are no setup violations is (answer in MHz).