Consider the following series:
(i) \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \)
(ii) \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \)
(iii) \( \sum_{n=1}^{\infty} \frac{1}{n!} \)
Choose the correct option.
Let's examine the convergence of each series:
(i) \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \):
This is a p-series with \( p = \frac{1}{2} \), and we know that a p-series converges if \( p > 1 \) and diverges if \( p \leq 1 \). Since \( p = \frac{1}{2} \), this series diverges.
(ii) \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \):
We can decompose this into partial fractions:
\[
\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}.
\]
This gives us a telescoping series, where most terms cancel out. The sum of the series converges, so this series converges.
(iii) \( \sum_{n=1}^{\infty} \frac{1}{n!} \):
The factorial function grows extremely fast, and it is known that the series \( \sum_{n=1}^{\infty} \frac{1}{n!} \) converges to \( e - 1 \), so this series converges.
Step 2: Conclusion. Since series (ii) and (iii) converge and series (i) diverges, the correct answer is (B).
A pot contains two red balls and two blue balls. Two balls are drawn from this pot randomly without replacement. What is the probability that the two balls drawn have different colours?
Consider a frequency-modulated (FM) signal \[ f(t) = A_c \cos(2\pi f_c t + 3 \sin(2\pi f_1 t) + 4 \sin(6\pi f_1 t)), \] where \( A_c \) and \( f_c \) are, respectively, the amplitude and frequency (in Hz) of the carrier waveform. The frequency \( f_1 \) is in Hz, and assume that \( f_c>100 f_1 \). The peak frequency deviation of the FM signal in Hz is _________.
To find a real root of the equation \( x^3 + 4x^2 - 10 = 0 \) in the interval \( \left( 1, \frac{3}{2} \right) \) using the fixed-point iteration scheme, consider the following two statements:
Statement 1 S1: The iteration scheme \( x_{k+1} = \sqrt{\frac{10}{4 + x_k}}, \, k = 0, 1, 2, \ldots \) converges for any initial guess \( x_0 \in \left( 1, \frac{3}{2} \right) \).
Statement 2 S2: The iteration scheme \( x_{k+1} = \frac{1}{2} \sqrt{10 - x_k^3}, \, k = 0, 1, 2, \ldots \) diverges for some initial guess \( x_0 \in \left( 1, \frac{3}{2} \right) \).
The following figures show three curves generated using an iterative algorithm. The total length of the curve generated after 'Iteration n' is:

Consider the unity-negative-feedback system shown in Figure (i) below, where gain \( K \geq 0 \). The root locus of this system is shown in Figure (ii) below.
For what value(s) of \( K \) will the system in Figure (i) have a pole at \( -1 + j1 \)?

If rank(A) is at least 3, then what are the possible values of \( \alpha, \beta, \gamma \)?