The Laplace transform of a function \( f(t) \) is defined as:
\[
\mathcal{L} \{ f(t) \} = \int_0^\infty e^{-st} f(t) \, dt.
\]
We are asked to find the function whose Laplace transform is \( \frac{s}{s^2 + a^2} \).
From standard Laplace transforms, we know that the Laplace transform of \( \cos(at) \) is:
\[
\mathcal{L} \{ \cos(at) \} = \frac{s}{s^2 + a^2}.
\]
Thus, the given expression \( \frac{s}{s^2 + a^2} \) corresponds to the Laplace transform of \( \cos(at) \).