We are given the function \( f(x) = 2x^3 - 3x^2 - 12x + 1 \). Let's first find the critical points by taking the derivative of \( f(x) \).
Step 1: Find the first derivative of \( f(x) \): \[ f'(x) = 6x^2 - 6x - 12. \]
Step 2: Set the first derivative equal to zero to find the critical points: \[ 6x^2 - 6x - 12 = 0. \] Simplifying the equation: \[ x^2 - x - 2 = 0. \] Factoring: \[ (x - 2)(x + 1) = 0. \] Thus, the critical points are \( x = 2 \) and \( x = -1 \).
Step 3: Second derivative test to determine the nature of the critical points:
The second derivative is: \[ f''(x) = 12x - 6. \] At \( x = -1 \), \( f''(-1) = 12(-1) - 6 = -18 \), which is less than 0, indicating a local maximum at \( x = -1 \).
At \( x = 2 \), \( f''(2) = 12(2) - 6 = 18 \), which is greater than 0, indicating a local minimum at \( x = 2 \).
Step 4: Global maximizer and minimizer
The function \( f(x) \) is a cubic function, and cubic functions have no global maxima or minima because they tend to infinity in one direction and negative infinity in the other direction. Thus, \( f(x) \) has no global maximizer or global minimizer. Therefore, the correct answers are (A) and (B).
The value of \[ \int \sin(\log x) \, dx + \int \cos(\log x) \, dx \] is equal to
The value of \[ \lim_{x \to \infty} \left( e^x + e^{-x} - e^x \right) \] is equal to
Eight students (P, Q, R, S, T, U, V, and W) are playing musical chairs. The figure indicates their order of position at the start of the game. They play the game by moving forward in a circle in the clockwise direction.
After the 1st round, the 4th student behind P leaves the game.
After the 2nd round, the 5th student behind Q leaves the game.
After the 3rd round, the 3rd student behind V leaves the game.
After the 4th round, the 4th student behind U leaves the game.
Who all are left in the game after the 4th round?

Consider a system represented by the block diagram shown below. Which of the following signal flow graphs represent(s) this system? Choose the correct option(s).

The following figures show three curves generated using an iterative algorithm. The total length of the curve generated after 'Iteration n' is:

Consider the unity-negative-feedback system shown in Figure (i) below, where gain \( K \geq 0 \). The root locus of this system is shown in Figure (ii) below.
For what value(s) of \( K \) will the system in Figure (i) have a pole at \( -1 + j1 \)?
