>
COMEDK UGET
>
Mathematics
List of top Mathematics Questions asked in COMEDK UGET
Which of the following is a subgroup of the group
$G = \{1, 2, 3, 4, 5, 6\}$
under
$\otimes_7$
?
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Relations and functions
The multiplicative inverse of
$ \frac{3 + 4i}{4 - 5 i}$
is
COMEDK UGET - 2012
COMEDK UGET
Mathematics
complex numbers
If
$\frac{2}{9!} + \frac{2}{3! \,7!}+\frac{1}{5! \,5!} =\frac{2^{a}}{b!}$
where
$a,b \in \, N$
then theordered pair
$(a, b)$
is
COMEDK UGET - 2012
COMEDK UGET
Mathematics
permutations and combinations
$\displaystyle\lim_{x\to0} \left(\frac{1+5x^{2}}{1+3x^{2}}\right)^{\frac{1}{x^{2}}} = $
COMEDK UGET - 2012
COMEDK UGET
Mathematics
limits and derivatives
The parametric equation of a parabola is
$x = t^2 + 1, y = 2t + 1$
. The cartesian equation of its directrix is
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Parabola
If
$ \int \frac{xe^{x}}{\left(1+x\right)^{2}} dx = e^{x} f\left(x\right) +c, $
then
$f(x)$
is equal to
COMEDK UGET - 2012
COMEDK UGET
Mathematics
integral
If
$x= \frac{1-t}{1+t} ; y= \frac{2t}{1+t}, $
then
$\frac{d^{2}y}{dx^{2}} = $
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Continuity and differentiability
If the tangent to the curve
$2y^3 = ax^2 + x^3$
at the point
$(a, a)$
cuts off intercepts
$\alpha$
and
$\beta$
on the coordinate axes where
$\alpha^2 + \beta^2 = 61$
, then the value of
$a$
is
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Application of derivatives
If $f(x) = \begin{cases} \frac{e^{3x} - 1}{4x} & \quad \text{for} x \neq 0 \\ \frac{k + x}{4} & \quad \text{for } x= 0 \end{cases}
$ is continuous at $
x = 0
$, then $
k =$
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Continuity and differentiability
Lengthof the subtangent at
$(a, a)$
on the curve
$y^2 = \frac{x^2}{2a +x}$
is equal to
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Application of derivatives
If
$\sqrt{\frac{x}{y}} + \sqrt{ \frac{y}{x}} = \sqrt{a}$
, then
$ \frac{dy}{dx} = $
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Statistics
If
$y=\log \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) ,$
then
$ \frac{dy}{dx} = $
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Continuity and differentiability
If
$|\vec{a} | = 2 , |\vec{b}| = 7$
and
$\vec{a} \times \vec{b} = 3 \hat{i} + 2 \hat{j} + 6\hat{k}$
then the angle between
$\vec{a}$
and
$\vec{b}$
is
COMEDK UGET - 2012
COMEDK UGET
Mathematics
Vector Algebra
If
$y =\frac{\sec x +\tan x}{\sec x - \tan x} $
, then
$\frac{dy}{dx} = $
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Continuity and differentiability
$1 + 3 + 5 + 7 + ... + 29 + 30 +31 + 32 + ... + 60 =$
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Sequence and series
The sum of all the positive divisors less than $250$ of the number $484$ is
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Arithmetic Progression
Let [ ?] denote the greatest integer function and
$f (x) = [\tan^2 x]$
. Then
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Statistics
$\frac{1}{\sin\theta}- \frac{\sqrt{3}}{\cos \theta}=$
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Trigonometric Functions
If
$x = 2y + 3$
is a focal chord of the ellipse with eccentricity 3/4, then the lengths of the major and minor axes are
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Conic sections
If
$\cos^{-1} x +\cos^{-1} y +\cos^{-1}z = 3\pi $
, then
$xy + yz + zx$
is
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Inverse Trigonometric Functions
$\lim_{x\to\infty} x^{\frac{1}{x}} = $
COMEDK UGET - 2011
COMEDK UGET
Mathematics
limits and derivatives
If
$f\left(x\right) = \frac{x^{2} -1}{x^{2} +1} ,x\in R$
then the minimum value of
$f$
is
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Application of derivatives
If the area of a circle increases at a uniform rate, then its perimeter varies
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Application of derivatives
The area of the parallelogram with
$\vec{a}$
and
$\vec{b}$
as adjacent sides is
$20\, s \,units$
. Then the area of the parallelogram having
$7\vec{a} + 5\vec{b}$
and
$8\vec{a} + 11\vec{b}$
as adjacent sides is
COMEDK UGET - 2011
COMEDK UGET
Mathematics
Product of Two Vectors
Let
$f (x)$
and
$g(x)$
be differentiable functions on (0, 2] such that
$f"(x) - g"(x) = 0, f'(1) = 2g'(1) = 4, f(2) = 3g(2) = 9.$
Then
$f (x)- g(x)$
at
$ x = 3/2$
is
COMEDK UGET - 2011
COMEDK UGET
Mathematics
integral
Prev
1
2
3
4
5
6
...
10
Next