To check the continuity of the function \( f(x) \) at \( x = 0 \), we need to ensure that:
\[
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)
\]
From the problem, we know that:
- \( f(0) = -5k \)
- \( \lim_{x \to 0^+} f(x) = \frac{\sin x}{x} + \cos x = 1 + 1 = 2 \)
- \( \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{4(1 - \sqrt{1 - x})}{x} \)
We will now compute \( \lim_{x \to 0^-} \frac{4(1 - \sqrt{1 - x})}{x} \) using the binomial expansion for \( \sqrt{1 - x} \):
\[
\sqrt{1 - x} \approx 1 - \frac{x}{2} \quad \text{for small } x
\]
Thus:
\[
1 - \sqrt{1 - x} \approx \frac{x}{2}
\]
So:
\[
\lim_{x \to 0^-} \frac{4(1 - \sqrt{1 - x})}{x} = \lim_{x \to 0^-} \frac{4 \times \frac{x}{2}}{x} = 2
\]
For continuity at \( x = 0 \), we need:
\[
2 = -5k
\]
Solving for \( k \):
\[
k = \frac{-2}{5}
\]
Thus, the correct answer is \( \frac{-2}{5} \).