Question:

The function defined by \[ f(x) = \begin{cases} \frac{\sin x}{x} + \cos x & \text{if } x>0 \\ -5k & \text{if } x = 0 \\ \frac{4(1 - \sqrt{1 - x})}{x} & \text{if } x<0 \end{cases} \] is continuous at

Show Hint

For continuity, ensure the left-hand limit, right-hand limit, and the function value at the point match.
Updated On: May 8, 2025
  • \( \frac{-2}{5} \)
  • -2
  • 2
  • \( \frac{-5}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To check the continuity of the function \( f(x) \) at \( x = 0 \), we need to ensure that: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \] From the problem, we know that: - \( f(0) = -5k \) - \( \lim_{x \to 0^+} f(x) = \frac{\sin x}{x} + \cos x = 1 + 1 = 2 \) - \( \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{4(1 - \sqrt{1 - x})}{x} \) We will now compute \( \lim_{x \to 0^-} \frac{4(1 - \sqrt{1 - x})}{x} \) using the binomial expansion for \( \sqrt{1 - x} \): \[ \sqrt{1 - x} \approx 1 - \frac{x}{2} \quad \text{for small } x \] Thus: \[ 1 - \sqrt{1 - x} \approx \frac{x}{2} \] So: \[ \lim_{x \to 0^-} \frac{4(1 - \sqrt{1 - x})}{x} = \lim_{x \to 0^-} \frac{4 \times \frac{x}{2}}{x} = 2 \] For continuity at \( x = 0 \), we need: \[ 2 = -5k \] Solving for \( k \): \[ k = \frac{-2}{5} \] Thus, the correct answer is \( \frac{-2}{5} \).
Was this answer helpful?
0
0