We are given the equation:
\[
\csc(90^\circ + A) + x \cos A \cot(90^\circ + A) = \sin(90^\circ + A)
\]
Using the following trigonometric identities:
\[
\csc(90^\circ + A) = \sec A, \quad \cot(90^\circ + A) = -\tan A, \quad \sin(90^\circ + A) = \cos A
\]
Substituting these into the equation:
\[
\sec A + x \cos A (-\tan A) = \cos A
\]
Simplifying:
\[
\sec A - x \cos A \tan A = \cos A
\]
Now, \( \sec A = \frac{1}{\cos A} \), so the equation becomes:
\[
\frac{1}{\cos A} - x \cos A \tan A = \cos A
\]
Rearranging the terms:
\[
\frac{1}{\cos A} = \cos A + x \cos A \tan A
\]
Simplifying further, we find that the value of \( x \) is \( \tan A \). Hence, the correct value is \( \tan A \).
Thus, the answer is \( \tan A \).