We are given the system of matrix equations:
\[
2A + 3B = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 2 & 5 \end{bmatrix}
\]
and
\[
A + 2B = \begin{bmatrix} 5 & 0 & 3 \\ 1 & 6 & 2 \end{bmatrix}
\]
Step 1: Solve for \( A \) and \( B \)
We have two equations and two unknowns, so we can solve for \( A \) and \( B \). First, let's multiply the second equation by 2:
\[
2A + 4B = \begin{bmatrix} 10 & 0 & 6
2 & 12 & 4 \end{bmatrix}
\]
Now, subtract the first equation from this new equation:
\[
(2A + 4B) - (2A + 3B) = \begin{bmatrix} 10 & 0 & 6 \\ 2 & 12 & 4 \end{bmatrix} - \begin{bmatrix} 2 & -1 & 4 \\ 3 & 2 & 5 \end{bmatrix}
\]
Simplifying both sides:
\[
B = \begin{bmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix}
\]
Thus, the value of \( B \) is \( \begin{bmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix} \).