We are given the expression \( \cos^6 A - \sin^6 A \), which is a difference of cubes. We can factor it using the identity:
\[
a^3 - b^3 = (a - b)(a^2 + ab + b^2)
\]
Thus, we can factor \( \cos^6 A - \sin^6 A \) as:
\[
\cos^6 A - \sin^6 A = (\cos^2 A - \sin^2 A) \left( \cos^4 A + \cos^2 A \sin^2 A + \sin^4 A \right)
\]
We know that \( \cos^2 A - \sin^2 A = \cos 2A \), so the expression becomes:
\[
\cos^6 A - \sin^6 A = \cos 2A \left( \cos^4 A + \cos^2 A \sin^2 A + \sin^4 A \right)
\]
Now, we simplify the second factor. Using the identity \( \cos^2 A + \sin^2 A = 1 \), we rewrite \( \cos^4 A + \sin^4 A \) as:
\[
\cos^4 A + \sin^4 A = (\cos^2 A + \sin^2 A)^2 - 2\cos^2 A \sin^2 A = 1 - 2\cos^2 A \sin^2 A
\]
Thus, the second factor becomes:
\[
\cos^4 A + \cos^2 A \sin^2 A + \sin^4 A = 1 - 2\cos^2 A \sin^2 A + \cos^2 A \sin^2 A = 1 - \cos^2 A \sin^2 A
\]
Finally, we recognize that \( \cos^2 A \sin^2 A = \frac{1}{4} \sin^2 2A \), so the expression simplifies to:
\[
\cos^6 A - \sin^6 A = \cos 2A \left( 1 - \frac{1}{4} \sin^2 2A \right)
\]
Thus, the correct answer is \( \cos 2A \left( 1 - \frac{1}{4} \sin^2 2A \right) \).