We are given the function:
\[
f(x) = \sin^{-1} \left( \frac{2x+1}{1 + 4x^2} \right)
\]
To find \( f'(0) \), we will first find the derivative of \( f(x) \) using the chain rule and the derivative of \( \sin^{-1}(x) \).
Step 1: Derivative of \( \sin^{-1}(u) \)
The derivative of \( \sin^{-1}(u) \) with respect to \( u \) is:
\[
\frac{d}{du} \sin^{-1}(u) = \frac{1}{\sqrt{1 - u^2}}
\]
In our case, \( u = \frac{2x+1}{1 + 4x^2} \).
Step 2: Chain Rule
Using the chain rule:
\[
f'(x) = \frac{1}{\sqrt{1 - u^2}} \times \frac{d}{dx} \left( \frac{2x+1}{1 + 4x^2} \right)
\]
Step 3: Derivative of \( u \)
Now, differentiate \( u = \frac{2x+1}{1 + 4x^2} \) with respect to \( x \) using the quotient rule:
\[
\frac{d}{dx} \left( \frac{2x+1}{1 + 4x^2} \right) = \frac{(1 + 4x^2)(B) - (2x + 1)(8x)}{(1 + 4x^2)^2}
\]
Simplifying:
\[
\frac{d}{dx} \left( \frac{2x+1}{1 + 4x^2} \right) = \frac{2 + 8x^2 - 16x^2 - 8x}{(1 + 4x^2)^2} = \frac{2 - 8x^2 - 8x}{(1 + 4x^2)^2}
\]
Step 4: Evaluate \( f'(0) \)
Now substitute \( x = 0 \) into the expressions:
\[
u = \frac{2(0) + 1}{1 + 4(0)^2} = \frac{1}{1} = 1
\]
Thus, at \( x = 0 \), \( u = 1 \), and \( 1 - u^2 = 1 - 1 = 0 \). Therefore,
\[
f'(0) = \frac{1}{\sqrt{1 - 1^2}} \times \left( \frac{2}{(1 + 4(0)^2)^2} \right) = \frac{2}{1} = \log 2
\]
Thus, the correct answer is \( \log 2 \).