Let \( (x, y) \in \mathbb{R}^2 \). The rate of change of the real-valued function
\[ V(x, y) = x^2 + x + y^2 + 1 \] at the origin in the direction of the point \( (1, 2) \) is _____________ (round off to the nearest integer).
Let \( (x, y) \in \mathbb{R}^2 \). The rate of change of the real-valued function \[ V(x, y) = x^2 + x + y^2 + 1 \] at the origin in the direction of the point \( (1, 2) \) is __________ (round off to the nearest integer).
200 ml of an aqueous solution contains 3.6 g of Glucose and 1.2 g of Urea maintained at a temperature equal to 27$^{\circ}$C. What is the Osmotic pressure of the solution in atmosphere units?
Given Data R = 0.082 L atm K$^{-1}$ mol$^{-1}$
Molecular Formula: Glucose = C$_6$H$_{12}$O$_6$, Urea = NH$_2$CONH$_2$