Let \( \vec{p} \) and \( \vec{q} \) be two unit vectors and \( \alpha \) be the angle between them. Then \( (\vec{p} + \vec{q}) \) will be a unit vector for what value of \( \alpha \)?
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm3/s. The rate at which the height of the sugar inside the tank is increasing is:
If \( y = \sin^{-1}x \), where \( -1 \leq x \leq 0 \), then the range of \( y \) is:
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
If \( f(x) = \begin{cases} 2x - 3, & -3 \leq x \leq -2 \\x + 1, & -2<x \leq 0 \end{cases} \), check the differentiability of \( f(x) \) at \( x = -2 \).