To solve this, we first need to simplify the argument of the sine function:
\[
\sin \left( -\frac{10\pi}{3} \right) = \sin \left( -\frac{10\pi}{3} + 2\pi \times 2 \right) = \sin \left( -\frac{10\pi}{3} + \frac{12\pi}{3} \right) = \sin \left( \frac{2\pi}{3} \right)
\]
Now, we evaluate $\sin^{-1} \left( \sin \left( \frac{2\pi}{3} \right) \right)$, which gives us the principal value of $-\frac{\pi}{3}$, as the value of $\sin^{-1}$ is always within the range $[-\frac{\pi}{2}, \frac{\pi}{2}]$.