We are given:
\[
\int_0^1 \frac{e^x}{1+x} \, dx = \alpha
\]
We need to compute the integral:
\[
\int_0^1 \frac{e^x}{(1+x)^2} \, dx
\]
Using integration by parts or substitution, we obtain:
\[
\int_0^1 \frac{e^x}{(1+x)^2} \, dx = \alpha - 1 - \frac{e}{2}
\]
Thus, the correct answer is (C) \( \alpha - 1 - \frac{e}{2} \).