We begin by letting the given integral be:
\[
I = \int \frac{\sin^{-1} \left( \frac{x}{\sqrt{a + x}} \right)}{ \sqrt{a + x}} \, dx
\]
To simplify this, let us use the substitution:
\[
u = \sin^{-1} \left( \frac{x}{\sqrt{a + x}} \right)
\]
Then:
\[
\sin(u) = \frac{x}{\sqrt{a + x}}
\]
Square both sides to eliminate the square root:
\[
\sin^2(u) = \frac{x^2}{a + x}
\]
Now differentiate both sides with respect to \( x \):
\[
2 \sin(u) \cos(u) \frac{du}{dx} = \frac{2x}{a + x} - \frac{x^2}{(a + x)^2}
\]
Now, express the integrand using this substitution and simplify further to solve the integral.