We are asked to evaluate \( \sin^{-1} \left( \sin \frac{3\pi}{5} \right) \).
The inverse sine function \( \sin^{-1}(x) \) gives the angle \( \theta \) such that \( \sin(\theta) = x \) and \( \theta \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \).
Since \( \frac{3\pi}{5} \) is greater than \( \frac{\pi}{2} \), we need to adjust the angle so that it lies within the principal range \( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \).
We can use the identity:
\[
\sin \left( \pi - x \right) = \sin x.
\]
Thus, we have:
\[
\sin \left( \frac{3\pi}{5} \right) = \sin \left( \pi - \frac{3\pi}{5} \right) = \sin \left( \frac{2\pi}{5} \right).
\]
Therefore:
\[
\sin^{-1} \left( \sin \frac{3\pi}{5} \right) = \frac{2\pi}{5}.
\]
Thus, the value of \( \sin^{-1} \left( \sin \frac{3\pi}{5} \right) \) is \( \boxed{\frac{2\pi}{5}} \).