If the system of linear equations $x + 2y + z = 5, 2x + \lambda y + 4z = 12, 4x + 8y + 12z = 2\mu$ have infinite number of solutions, then the values of $\lambda$ and $\mu$ are ________?
Suppose that 2 is an eigenvalue of the matrix
Then the value of \( \alpha \) is equal to (Answer in integer):
Evaluate:
$\displaystyle \int_{0}^{3} x \cos(\pi x) \, dx$
Find:$\displaystyle \int \dfrac{dx}{\sin x + \sin 2x}$