We are given that $\det(M) = m$ and $MN = mI$. Taking the determinant of both sides, we get:
\[
\det(MN) = \det(mI)
\]
Since $\det(MN) = \det(M) \cdot \det(N)$ and $\det(mI) = m^3$, we have:
\[
\det(M) \cdot \det(N) = m^3
\]
Substituting $\det(M) = m$, we get:
\[
m \cdot \det(N) = m^3 \quad \Rightarrow \quad \det(N) = m^2
\]
Thus, the correct answer is $m^2$.