Question:

The value of \( \lim_{x \to 0} \frac{(1 + x)^{\frac{1}{x}} - e + \frac{1}{2}e^x}{x^2} \) is:

Show Hint

For limits involving complex functions, expansions such as Taylor or Maclaurin series are extremely helpful in simplifying expressions by removing higher order terms which do not affect the limit.
Updated On: Mar 26, 2025
  • \(\frac{11}{24e} \)
  • \(-\frac{11}{24e} \)
  • \(\frac{e}{24} \)
  • None of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let \( y = (1 + x)^{\frac{1}{x}} \). Then, \[ \log y = \frac{1}{x} \log(1 + x) = \frac{1}{x} \left( x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \right) \] \[ = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \ldots \] So, \[ y = e^{\log y} = e^{1 - \frac{x}{2} + \frac{x^2}{3} - \ldots} = e \cdot e^{-\frac{x}{2} + \frac{x^2}{3} - \ldots} \] \[ = e \left( 1 + \left( -\frac{x}{2} + \frac{x^2}{3} \right) + \frac{1}{2!} \left( -\frac{x}{2} + \frac{x^2}{3} \right)^2 + \ldots \right) \] \[ = e \left( 1 + \left( -\frac{x}{2} + \frac{x^2}{3} \right) + \frac{1}{2} \left( \frac{x^2}{4} - \frac{2x^3}{6} + \frac{x^4}{9} \right) + \ldots \right) \] Thus, \[ y - e + \frac{1}{2} e^x = e \left[ \frac{1}{3} x^2 + \left(\frac{1}{2} \times \frac{x^2}{4}\right) \right] + \ldots = e \left[ \frac{1}{3} x^2 + \frac{1}{8} x^2 \right] + \ldots \] \[ = e \left[ \frac{3}{8} x^2 \right] + \ldots \] Therefore, \[ \lim_{x \to 0} \frac{y - e + \frac{1}{2} e^x}{x^2} = e \left[ \frac{1}{3} + \frac{1}{8} \right] = \frac{11}{24} e \]
Was this answer helpful?
0
0