Let \( y = (1 + x)^{\frac{1}{x}} \).
Then,
\[
\log y = \frac{1}{x} \log(1 + x) = \frac{1}{x} \left( x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \right)
\]
\[
= 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \ldots
\]
So,
\[
y = e^{\log y} = e^{1 - \frac{x}{2} + \frac{x^2}{3} - \ldots} = e \cdot e^{-\frac{x}{2} + \frac{x^2}{3} - \ldots}
\]
\[
= e \left( 1 + \left( -\frac{x}{2} + \frac{x^2}{3} \right) + \frac{1}{2!} \left( -\frac{x}{2} + \frac{x^2}{3} \right)^2 + \ldots \right)
\]
\[
= e \left( 1 + \left( -\frac{x}{2} + \frac{x^2}{3} \right) + \frac{1}{2} \left( \frac{x^2}{4} - \frac{2x^3}{6} + \frac{x^4}{9} \right) + \ldots \right)
\]
Thus,
\[
y - e + \frac{1}{2} e^x = e \left[ \frac{1}{3} x^2 + \left(\frac{1}{2} \times \frac{x^2}{4}\right) \right] + \ldots = e \left[ \frac{1}{3} x^2 + \frac{1}{8} x^2 \right] + \ldots
\]
\[
= e \left[ \frac{3}{8} x^2 \right] + \ldots
\]
Therefore,
\[
\lim_{x \to 0} \frac{y - e + \frac{1}{2} e^x}{x^2} = e \left[ \frac{1}{3} + \frac{1}{8} \right] = \frac{11}{24} e
\]