Consider a system of equations that has a non-trivial solution, implying that the determinant of the system's matrix must be zero. Given the matrix
\[
\Delta = \begin{vmatrix}
p & a & a \\
b & q & b \\
c & c & r
\end{vmatrix} = 0
\]
we apply column operations \(C_2 \rightarrow C_2 - C_1\) and \(C_3 \rightarrow C_3 - C_1\) to simplify the determinant:
\[
\Delta = \begin{vmatrix}
p & a-p & a-p \\
b & q-b & b \\
c & 0 & r-c
\end{vmatrix} = 0
\]
Expanding along \(C_3\), we calculate:
\[
\Delta = (a-p)\begin{vmatrix}
b & q-b \\
c & 0
\end{vmatrix} - (r-c)\begin{vmatrix}
p & a-p \\
b & q-b
\end{vmatrix} = 0
\]
\[
= (a-p)(b \cdot 0 - c(q-b)) + (r-c)(p(q-b) - b(a-p)) = 0
\]
\[
= -(a-p)c(q-b) + (r-c)(pq - pb - ab + bp) = 0
\]
\[
= (a-p)c(q-b) - (r-c)(pq - ab) = 0
\]
\[
= (pq - ab)(r-c) - (q-b)(a-p)c = 0
\]
Dividing by \((pq-ab)(r-c)\) and \((q-b)\), we simplify:
\[
\frac{c}{r-c} + \frac{p-a}{q-b} + \frac{b}{r-c} = 0
\]
\[
\frac{p-a}{q-b} - \frac{q-r}{q-b} = 2
\]
This results in the relation:
\[
\frac{p-r}{q-b} = 2
\]
confirming that for a non-trivial solution to exist, specific relations between the parameters must hold.
Thus, the correct answer is Option B.