Let \( a>1 \) and \( 0<b<1 \). -∞\( f : \mathbb{R} \to [0, 1] \) is defined by \( f(x) = \begin{cases} a^x & \text{if } x<0 b^x & \text{if } 0 \leq x \leq 1 \end{cases} \), then \( f(x) \) is:
If \[ A = \begin{bmatrix} 1 & 0 & 2\\ 2 & 1 & 3 \\3 & 2 & 4 \end{bmatrix}, \] then evaluate \( A^2 - 5A + 6I \)=
Sum of the positive roots of the equation: \[ \begin{vmatrix} x^2 + 2x + 2 & x + 2 & 1 \\ 2x + 1 & x - 1 & 1 \\ x + 2 & -1 & 1 \end{vmatrix} = is \; 0. \]
If \(\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0,\) then evaluate \((\cos^3 \alpha + \cos^3 \beta + \cos^3 \gamma)^2 + (\sin^3 \alpha + \sin^3 \beta + \sin^3 \gamma)^2 =\)
If the sum of two roots of \( x^3 + px^2 + qx - 5 = 0 \) is equal to its third root, then \( p(q^2 - 4q) = \) ?