>
AP EAPCET
>
Mathematics
List of top Mathematics Questions asked in AP EAPCET
If \( x \) is a positive real number and the first negative term in the expansion of
\[ (1 + x)^{27/5} \text{ is } t_k, \text{ then } k =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Number System
\[ \sum_{r=1}^{15} r^2 \left( \frac{{}^{15}C_r}{{}^{15}C_{r-1}} \right) =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial Expansion
If
\[ \frac{x^2}{(x^2 + 2)(x^4 - 1)} = \frac{A}{x^2 - 1} + \frac{B}{x^2 + 1} + \frac{C}{x^2 + 2}, \text{ then } A + B - C =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
Evaluate the following expression:
\[ \frac{1}{81^n} - \binom{2n}{1} . \frac{10}{81^n} + \binom{2n}{2} . \frac{10^2}{81^n} - .s + \frac{10^{2n}}{81^n} = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Combinatorics
A string of letters is to be formed by using 4 letters from all the letters of the word “MATHEMATICS”. The number of ways this can be done such that two letters are of same kind and the other two are of different kind is
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial theorem
An eight digit number divisible by 9 is to be formed using digits from 0 to 9 without repeating the digits. The number of ways in which this can be done is
AP EAPCET - 2025
AP EAPCET
Mathematics
Number System
If
\( \omega_1 \) and \( \omega_2 \) are two non-zero complex numbers and \( a, b \) are non-zero real numbers such that \[ |a\omega_1 + b\omega_2| = |a\omega_1 - b\omega_2|, \] then \( \dfrac{\omega_1}{\omega_2} \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
If
\( \alpha, \beta, \gamma \)
are the roots of the equation
\[ x^3 + px^2 + qx + r = 0, \]
then
\[ (\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If
\( \alpha, \beta \) are the roots of \( x^2 - 5x - 68 = 0 \) and \( \gamma, \delta \) are the roots of \( x^2 - 5\alpha x - 6\beta = 0 \), then \( \alpha + \beta + \gamma + \delta = \) ?
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
The equation
\[ x^{\frac{3}{4}(\log_{x} x)^2 + \log_{x} x^{-\frac{5}{4}}} = \sqrt{2} \]
has
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If
\( \alpha \) is the common root of the quadratic equations \( x^2 - 5x + 4a = 0 \) and \( x^2 - 2ax - 8 = 0 \), where \( a \in \mathbb{R} \), then the value of \( \alpha^4 - \alpha^3 + 68 \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
A value of \( \theta \) lying between \( 0 \) and \( \dfrac{\pi}{2} \) and satisfying
\[ \begin{vmatrix} 1 + \sin^2 \theta & \cos^2 \theta & 4\sin 4\theta \\ \sin^2 \theta & 1 + \cos^2 \theta & 4\sin 4\theta \\ \sin^2 \theta & \cos^2 \theta & 1 + 4\sin 4\theta \end{vmatrix} = 0 \]
is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
The remainder obtained when \( (2m + 1)^{2n} \), \( m, n \in \mathbb{N} \) is divided by 8 is
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
If the system of equations \( 2x + py + 6z = 8 \), \( x + 2y + qz = 5 \) and \( x + y + 3z = 4 \) has infinitely many solutions, then \( p = \)?
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
If \( f : \mathbb{R} \to A \), defined by \( f(x) = \cos x + \sqrt{3}\sin x - 1 \), is an onto function, then \( A = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
Let \( g(x) = 1 + x - \lfloor x \rfloor \) and
\[ f(x) = \begin{cases} -1, & x<0\\ 0, & x = 0 \\ 1, & x>0 \end{cases} \]
where \( \lfloor x \rfloor \) denotes the greatest integer less than or equal to \( x \). Then for all \( x \), \( f(g(x)) = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
The general solution of the differential equation \((1 + \sin^2 x) \, \frac{dy}{dx} + \sin 2x = 0\) is?
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
The area of the region (in sq.units) bounded by the curves \(x^2 + y^2 = 16\) and \(x^2 + y^2 = 6x\) is?
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
Evaluate \[ \int \sin^3 x \cos^2 x \, dx = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
The general solution of the differential equation \(xy(y + 2y') + (y^2 - y) \, dx = 0\) is?
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
Evaluate \[ \lim_{n \to \infty} \frac{1}{2n} \left( \sin \frac{\pi}{2n} + \sin \frac{\pi}{n} + \sin \frac{2\pi}{2n} + \dots \right) = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Differentiation
Evaluate \[ \int \frac{1}{x^4 + 1} \, dx = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
Evaluate \[ \int_0^\pi \left( \sin^3 x \cos^3 x + \sin^4 x \cos^4 x + \sin^3 x \cos^3 x \right) dx = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Limits and Exponential Functions
If \(a\) and \(b\) are arbitrary constants, then the differential equation corresponding to the family of curves \(y = \tan (ax + b)\) is?
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
If \[ \int \frac{dx}{(x \tan x + 1)^2} = f(x) + c, \] then \(\lim_{x \to \frac{\pi}{2}} f(x)\) is?
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
Prev
1
...
3
4
5
6
7
...
97
Next