>
Exams
>
Mathematics
>
Integration
>
evaluate int log 2x 3 dx
Question:
Evaluate \[ \int (\log 2x)^3 \, dx = ? \]
Show Hint
Apply integration by parts for powers of logarithmic functions.
AP EAPCET - 2025
AP EAPCET
Updated On:
Jun 6, 2025
\(x \left[(\log 2x)^3 - 3 (\log 2x)^2 + 6 (\log 2x) - 6 \right] + c\)
\(\frac{x}{4} \left[4(\log 2x)^3 - 6 (\log 2x)^2 + 6 (\log 2x) - 3 \right] + c\)
\(\frac{x}{2} \left[(\log 2x)^3 - 3 (\log 2x)^2 + 3 (\log 2x) - 6\right] + c\)
\(x \left[(\log 2x)^3 - 6 (\log 2x)^2 + 18 (\log 2x) - 54\right] + c\)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Use integration by parts with substitution \(t = \log 2x\). Repeatedly integrate powers of \(t\), and substitute back to get \[ \int (\log 2x)^3 dx = x \left[(\log 2x)^3 - 3 (\log 2x)^2 + 6 (\log 2x) - 6\right] + c. \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Integration
Find:
\[ \int \frac{2x}{(x^2 + 3)(x^2 - 5)} \, dx \]
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
If \( \int \frac{1}{2x^2} \, dx = k \cdot 2x + C \), then \( k \) is equal to:
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
Evaluate the integral:
\[ \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \]
MHT CET - 2025
Mathematics
Integration
View Solution
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \) and \( x = 2 \) is:
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
Find :
\[ I = \int \frac{x + \sin x}{1 + \cos x} \, dx \]
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
View More Questions
Questions Asked in AP EAPCET exam
For all \( n \in \mathbb{N} \), if \( 1^3 + 2^3 + 3^3 + \cdots + n^3>x \), then a value of \( x \) among the following is:
AP EAPCET - 2025
Matrices
View Solution
$\tan\left(\frac{2\pi}{7}\right)\tan\left(\frac{4\pi}{7}\right) + \tan\left(\frac{4\pi}{7}\right)\tan\left(\frac{\pi}{7}\right) + \tan\left(\frac{\pi}{7}\right)\tan\left(\frac{2\pi}{7}\right) =$
AP EAPCET - 2025
Trigonometric Identities
View Solution
Let $ A(4, 3), B(2, 5) $ be two points. If $ P $ is a variable point on the same side of the origin as that of line $ AB $ and at most 5 units from the midpoint of $ AB $, then the locus of $ P $ is:
AP EAPCET - 2025
Coordinate Geometry
View Solution
The equation of the normal drawn at the point \((\sqrt{2}+1, -1)\) to the ellipse \(x^2 + 2y^2 - 2x + 8y + 5 = 0\) is
AP EAPCET - 2025
Geometry
View Solution
The equation \((2p - 3)x^2 + 2pxy - y^2 = 0\) represents a pair of distinct lines
AP EAPCET - 2025
Geometry
View Solution
View More Questions