Let \( f(x) = \cos x + \sqrt{3} \sin x - 1 \). This is a linear combination of sine and cosine:
\[
f(x) = R \sin(x + \alpha) - 1
\]
where \( R = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2 \). So, maximum and minimum of \( f(x) \) are:
\[
\max f(x) = 2 - 1 = 1,
\min f(x) = -2 - 1 = -3
\]
Thus, the range of \( f(x) \) is \( [-3, 1] \). Since \( f \) is onto, \( A = [-3, 1] \).