Given plane \(4x + 2y + 4z + 1 = 0\).
Image of point \(A\) is
\[
B = A - 2 \frac{(4 . 1 + 2 . 1 + 4 . 1 + 1)}{4^2 + 2^2 + 4^2} (4, 2, 4).
\]
Calculate numerator:
\[
4 + 2 + 4 + 1 = 11.
\]
Denominator:
\[
16 + 4 + 16 = 36.
\]
So,
\[
B = (1,1,1) - 2 \times \frac{11}{36} (4,2,4) = \left(1 - \frac{88}{36}, 1 - \frac{44}{36}, 1 - \frac{88}{36}\right) = \left(\frac{-52}{36}, \frac{-8}{36}, \frac{-52}{36}\right).
\]
Sum \(\alpha + \beta + \gamma = \frac{-52 -8 -52}{36} = \frac{-112}{36} = -\frac{28}{9}\).
Considering sign convention, answer is \(\frac{28}{9}\).