Given \(f(x) = x^{\sec^{-1} x}\), write as
\[
f(x) = e^{\sec^{-1} x \log x}.
\]
Differentiate using product and chain rules:
\[
f'(x) = f(x) \left( \frac{d}{dx} (\sec^{-1} x) \log x + \frac{\sec^{-1} x}{x} \right).
\]
Use
\[
\frac{d}{dx} \sec^{-1} x = \frac{1}{|x| \sqrt{x^2 -1}}.
\]
At \(x=2\),
\[
\sec^{-1} 2 = \frac{\pi}{3},
f(2) = 2^{\pi/3}.
\]
Calculate derivatives and substitute values to find
\[
f'(2) = \frac{2^{\pi/3}}{6} \left(\pi + \sqrt{3} \log 2\right).
\]