Question:

Evaluate \[ \int \frac{x + 1}{(x - 2) \sqrt{1 - x}} \, dx = ? \]

Show Hint

Use substitution and standard integral forms involving inverse trigonometric functions.
Updated On: Jun 6, 2025
  • \(\log(x + 1) - \log (x - 2) \sqrt{1 - x} + c\)
  • \(\log(x - 2) \sqrt{1 - x} + c\)
  • \(6 \tan^{-1} \sqrt{1 - x} - 2 \sqrt{1 - x} + c\)
  • \(4 \tan^{-1} \sqrt{1 - x} - 2 \sqrt{1 - x} + c\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Use substitution \(t = \sqrt{1 - x}\) to simplify integral. Integrate using inverse tangent and algebraic terms to get the solution \[ 6 \tan^{-1} \sqrt{1 - x} - 2 \sqrt{1 - x} + c. \]
Was this answer helpful?
0
0