Let point \(P(x,y,z)\) be equidistant from \(A, B, C\).
\[
PA = PB \implies (x-2)^2 + y^2 + (z-3)^2 = x^2 + (y-3)^2 + (z-2)^2,
\]
\[
PB = PC \implies x^2 + (y-3)^2 + (z-2)^2 = x^2 + y^2 + (z-1)^2.
\]
From these, solve for \(x, y, z\), resulting in
\[
(x,y,z) = (3,2,0).
\]