Step 1: Consider \( g(x) = 1 + x - \lfloor x \rfloor \). This is always a number in the interval \( (1, 2) \) for any real \( x \), since \( x - \lfloor x \rfloor \in [0, 1) \).
Step 2: So, \( g(x) \in (1, 2) \Rightarrow g(x)>0 \ \forall x \in \mathbb{R} \).
Step 3: Given \( f(x) \) is:
\[
f(x) =
\begin{cases}
-1, & x<0
0, & x = 0
1, & x>0
\end{cases}
\]
Step 4: Since \( g(x)>0 \Rightarrow f(g(x)) = 1 \)
\[
\boxed{f(g(x)) = 1 \text{ for all } x}
\]