Question:

Let \( g(x) = 1 + x - \lfloor x \rfloor \) and \[ f(x) = \begin{cases} -1, & x<0\\ 0, & x = 0 \\ 1, & x>0 \end{cases} \] where \( \lfloor x \rfloor \) denotes the greatest integer less than or equal to \( x \). Then for all \( x \), \( f(g(x)) = \)

Show Hint

For expressions involving greatest integer \( \lfloor x \rfloor \), note that \( x - \lfloor x \rfloor \) always lies in \( [0, 1) \). Use this to bound the function output.
Updated On: Jun 6, 2025
  • \( 1 \)
  • \( x \)
  • \( f(x) \)
  • \( g(x) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


Step 1: Consider \( g(x) = 1 + x - \lfloor x \rfloor \). This is always a number in the interval \( (1, 2) \) for any real \( x \), since \( x - \lfloor x \rfloor \in [0, 1) \).
Step 2: So, \( g(x) \in (1, 2) \Rightarrow g(x)>0 \ \forall x \in \mathbb{R} \).
Step 3: Given \( f(x) \) is: \[ f(x) = \begin{cases} -1, & x<0
0, & x = 0
1, & x>0 \end{cases} \]
Step 4: Since \( g(x)>0 \Rightarrow f(g(x)) = 1 \) \[ \boxed{f(g(x)) = 1 \text{ for all } x} \]
Was this answer helpful?
0
0

Questions Asked in AP EAPCET exam

View More Questions

AP EAPCET Notification