Question:

If \( \omega_1 \) and \( \omega_2 \) are two non-zero complex numbers and \( a, b \) are non-zero real numbers such that \[ |a\omega_1 + b\omega_2| = |a\omega_1 - b\omega_2|, \] then \( \dfrac{\omega_1}{\omega_2} \) is:

Show Hint

This type of question often tests your understanding of the geometric interpretation of complex numbers. If magnitudes of vector additions and subtractions are equal, the vectors are perpendicular.
Updated On: Jun 6, 2025
  • a positive real number
  • a negative real number
  • zero
  • purely imaginary number
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation


Given: \( |a\omega_1 + b\omega_2| = |a\omega_1 - b\omega_2| \)
Square both sides: \[ |a\omega_1 + b\omega_2|^2 = |a\omega_1 - b\omega_2|^2 \]
Use identity \( |z|^2 = z\overline{z} \): \[ (a\omega_1 + b\omega_2)(\overline{a\omega_1 + b\omega_2}) = (a\omega_1 - b\omega_2)(\overline{a\omega_1 - b\omega_2}) \]
Simplify: \[ a^2|\omega_1|^2 + ab(\omega_1\overline{\omega_2} + \overline{\omega_1}\omega_2) + b^2|\omega_2|^2 \] \[ = a^2|\omega_1|^2 - ab(\omega_1\overline{\omega_2} + \overline{\omega_1}\omega_2) + b^2|\omega_2|^2 \]
Subtract: \[ 2ab(\omega_1\overline{\omega_2} + \overline{\omega_1}\omega_2) = 0 \Rightarrow \omega_1\overline{\omega_2} + \overline{\omega_1}\omega_2 = 0 \]
This implies: \[ \Re(\omega_1\overline{\omega_2}) = 0 \Rightarrow \omega_1\overline{\omega_2} \text{ is purely imaginary} \Rightarrow \frac{\omega_1}{\omega_2} \text{ is purely imaginary} \] \[ \boxed{\text{Correct Option: (4)}} \] % Tip
Was this answer helpful?
0
0

Top Questions on Complex numbers

View More Questions

AP EAPCET Notification