Given that \( \alpha \) is a common root of the equations:
\[
x^2 - 5x + 4a = 0
\text{and}
x^2 - 2ax - 8 = 0
\]
Since \( \alpha \) satisfies both equations:
\[
\alpha^2 - 5\alpha + 4a = 0
\text{(1)}
\]
\[
\alpha^2 - 2a\alpha - 8 = 0
\text{(2)}
\]
Subtract (2) from (1):
\[
(\alpha^2 - 5\alpha + 4a) - (\alpha^2 - 2a\alpha - 8) = 0
\]
\[
-5\alpha + 4a + 2a\alpha + 8 = 0
\Rightarrow (2a - 5)\alpha + 4a + 8 = 0
\]
Solve for \( \alpha \):
\[
(2a - 5)\alpha = -4a - 8
\Rightarrow \alpha = \frac{-4a - 8}{2a - 5}
\text{(3)}
\]
Substitute (3) in one of the original equations, say (1):
\[
\alpha^2 - 5\alpha + 4a = 0
\Rightarrow \text{Compute } \alpha^4 - \alpha^3 + 68
\]
Use the fact from (1): \( \alpha^2 = 5\alpha - 4a \)
Square both sides:
\[
\alpha^4 = (\alpha^2)^2 = (5\alpha - 4a)^2 = 25\alpha^2 - 40a\alpha + 16a^2
\]
But \( \alpha^2 = 5\alpha - 4a \), so:
\[
\alpha^4 = 25(5\alpha - 4a) - 40a\alpha + 16a^2 = 125\alpha - 100a - 40a\alpha + 16a^2
\]
Now compute \( \alpha^3 \). Multiply both sides of (1) by \( \alpha \):
\[
\alpha^3 = 5\alpha^2 - 4a\alpha = 5(5\alpha - 4a) - 4a\alpha = 25\alpha - 20a - 4a\alpha
\]
Now find \( \alpha^4 - \alpha^3 + 68 \):
\[
\alpha^4 - \alpha^3 + 68 = (125\alpha - 100a - 40a\alpha + 16a^2) - (25\alpha - 20a - 4a\alpha) + 68
\]
Simplify:
\[
= (125\alpha - 25\alpha) + (-40a\alpha + 4a\alpha) + (-100a + 20a) + 16a^2 + 68
\]
\[
= 100\alpha - 36a\alpha - 80a + 16a^2 + 68
\]
Now substitute \( \alpha = 2 \), which satisfies both equations when \( a = 1 \)
\[
\alpha = 2,
a = 1
\]
\[
\Rightarrow \alpha^4 = 2^4 = 16,
\alpha^3 = 8
\Rightarrow \alpha^4 - \alpha^3 + 68 = 16 - 8 + 68 = 76
\]
Wait — there's a contradiction, so check which value of \( \alpha \) satisfies both:
Try \( a = 2 \) check if a common root exists
For \( a = 2 \), first equation: \( x^2 - 5x + 8 = 0 \), roots are complex.
Try \( a = 1 \), then:
\[
x^2 - 5x + 4 = 0 \Rightarrow x = 1, 4
\text{and}
\]
\[
x^2 - 2x - 8 = 0 \Rightarrow x = 4, -2
\Rightarrow \alpha = 4
\]
So finally:
\[
\alpha = 4 \Rightarrow \alpha^4 = 256,
\alpha^3 = 64
\Rightarrow \alpha^4 - \alpha^3 + 68 = 256 - 64 + 68 = 260
\]
\[
\boxed{\text{Correct Option: (1)}}
\]
% Tip