Step 1: Given the roots of the cubic equation are \( \alpha, \beta, \gamma \), we apply Vieta’s formulas:
\begin{align*}
\alpha + \beta + \gamma = -p
\alpha\beta + \beta\gamma + \gamma\alpha = q
\alpha\beta\gamma = -r
\]
Step 2: Evaluate the required expression:
\[
(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)
\]
Step 3: Expand step-by-step:
Let’s denote:
\[
(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) = S
\]
First, use identity:
\[
(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)
= (\alpha + \beta + \gamma)(\alpha\beta + \beta\gamma + \gamma\alpha) - \alpha\beta\gamma
\]
Substitute the known values:
\[
= (-p)(q) - (-r) = -pq + r = r - pq
\]
Step 4: Final Answer:
\[
\boxed{r - pq}
\]
% Tip