Step 1: Let us denote the determinant as \( D \). Given:
\[
D =
\begin{vmatrix}
1 + \sin^2 \theta & \cos^2 \theta & 4\sin 4\theta \\
\sin^2 \theta & 1 + \cos^2 \theta & 4\sin 4\theta \\
\sin^2 \theta & \cos^2 \theta & 1 + 4\sin 4\theta
\end{vmatrix} = 0
\]
Step 2: Perform row operation \( R_1 \rightarrow R_1 - R_2 \):
\[
R_1 \rightarrow (1 + \sin^2 \theta - \sin^2 \theta, \cos^2 \theta - (1 + \cos^2 \theta), 4\sin 4\theta - 4\sin 4\theta)
\]
\[
\Rightarrow R_1 = (1, -1, 0)
\]
Step 3: Perform row operation \( R_2 \rightarrow R_2 - R_3 \):
\[
R_2 = (\sin^2 \theta - \sin^2 \theta, 1 + \cos^2 \theta - \cos^2 \theta, 4\sin 4\theta - (1 + 4\sin 4\theta)) = (0, 1, -1)
\]
Step 4: So the matrix becomes:
\[
D =
\begin{vmatrix}
1 & -1 & 0
0 & 1 & -1
\sin^2 \theta & \cos^2 \theta & 1 + 4\sin 4\theta
\end{vmatrix}
\]
Step 5: Expand the determinant:
\[
D = 1 . \begin{vmatrix}
1 & -1 \\
\cos^2 \theta & 1 + 4\sin 4\theta
\end{vmatrix}
+ 1 . \begin{vmatrix}
0 & -1 \\
\sin^2 \theta & 1 + 4\sin 4\theta
\end{vmatrix}
\]
Step 6: Simplify:
\[
= 1 . (1 . (1 + 4\sin 4\theta) + \cos^2 \theta) + 1 . (0 . (1 + 4\sin 4\theta) + \sin^2 \theta)
\Rightarrow D = 1 + 4\sin 4\theta + \cos^2 \theta + \sin^2 \theta
\]
\[
= 1 + 4\sin 4\theta + 1 = 2 + 4\sin 4\theta
\Rightarrow 2 + 4\sin 4\theta = 0
\Rightarrow \sin 4\theta = -\dfrac{1}{2}
\]
Step 7: Find \( \theta \) such that \( 4\theta = 7\pi/6 \Rightarrow \theta = \dfrac{7\pi}{24} \)
\[
\boxed{\theta = \dfrac{7\pi}{24}}
\]