Step 1: Factor the denominator:
\[
(x^2 + 2)(x^4 - 1) = (x^2 + 2)(x^2 - 1)(x^2 + 1)
\]
Step 2: The partial fraction decomposition is already given:
\[
\frac{x^2}{(x^2 + 2)(x^2 - 1)(x^2 + 1)} = \frac{A}{x^2 - 1} + \frac{B}{x^2 + 1} + \frac{C}{x^2 + 2}
\]
Step 3: Multiply both sides by the denominator:
\[
x^2 = A(x^2 + 1)(x^2 + 2) + B(x^2 - 1)(x^2 + 2) + C(x^2 - 1)(x^2 + 1)
\]
Now expand each term:
- \( A(x^2 + 1)(x^2 + 2) = A(x^4 + 3x^2 + 2) \)
- \( B(x^2 - 1)(x^2 + 2) = B(x^4 + x^2 - 2) \)
- \( C(x^2 - 1)(x^2 + 1) = C(x^4 - 1) \)
Step 4: Combine and equate the coefficients:
\[
x^2 = (A + B + C)x^4 + (3A + B)x^2 + (2A - 2B - C)
\]
Now compare coefficients with LHS \( x^2 \), i.e.,
- Coefficient of \( x^4 \): \( A + B + C = 0 \)
- Coefficient of \( x^2 \): \( 3A + B = 1 \)
- Constant term: \( 2A - 2B - C = 0 \)
Step 5: Solve the system:
From \( A + B + C = 0 \Rightarrow C = -A - B \)
Substitute into the others:
- \( 3A + B = 1 \)
- \( 2A - 2B - (-A - B) = 0 \Rightarrow 2A - 2B + A + B = 0 \Rightarrow 3A - B = 0 \Rightarrow B = 3A \)
Now, plug into second equation:
\[
3A + 3A = 1 \Rightarrow 6A = 1 \Rightarrow A = \frac{1}{6},
B = \frac{1}{2},
C = -\left(\frac{1}{6} + \frac{1}{2}\right) = -\frac{2}{3}
\]
So,
\[
A + B - C = \frac{1}{6} + \frac{1}{2} + \frac{2}{3} = \frac{2 + 3 + 4}{6} = \frac{9}{6} = \frac{3}{2}
\]
Wait! Correction:
Actually, \(\frac{1}{6} + \frac{1}{2} = \frac{2 + 6}{12} = \frac{8}{12} = \frac{2}{3} + \frac{2}{3} = \frac{4}{3} \)
Final answer:
\[
A + B - C = \frac{4}{3}
\]