If $ \frac{k}{kx + 3} + \frac{3}{3x-k}= \frac{12x + 5}{(kx + 3)(3x - k)} $, then both the roots of the equation $ kx^2 - 7x + 3 = 0 $ are:
Let ABCD be a parallelogram and $ 2\bar{i} + \bar{j} $, $ 4\bar{i} + 5\bar{j} + 4\bar{k} $ and $ -\bar{i} - 4\bar{j} - 3\bar{k} $ be the position vectors of the vertices A, B, D respectively. Then the position vector of one of the points of trisection of the diagonal AC is
Match the items of List - A with those of the entries of List - B.
If $ N(n) = n \prod_{r=1}^{2023} (n^2 - r^2) $ where $ n > 2023 $, then the value of $ {}^{n}C_{N-1} $ when $ n = 2024 $ is:
Match the following
Mention the Nitrogen base sequence name, restriction cut sites and type of cut ends in the above DNA fragment.5' - GAATTC - 3'3' - CTTAAG - 5'
Match the following:List I and List II