We are given the inradius \( r \) and the ex-radii \( r_1, r_2, r_3 \). We need to evaluate the expression \( \frac{1}{4} \left[ b^2 \sin 2C + c^2 \sin 2B \right] \).
Step 1: The general identity for the area of a triangle in terms of its sides and angles is:
\[
\Delta = \frac{1}{2}ab \sin C = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B
\]
This identity allows us to relate the sides \( b \), \( c \), and angles \( A \), \( B \), and \( C \).
Step 2: The given expression involves the angles and sides of the triangle. We can express these terms using the trigonometric identities and ex-radii. Simplifying the given expression \( \frac{1}{4} \left[ b^2 \sin 2C + c^2 \sin 2B \right] \) results in:
\[
\frac{1}{4} \left[ b^2 \sin 2C + c^2 \sin 2B \right] = rr_1 \cot \frac{A}{2}
\]
Step 3: Therefore, the simplified expression is \( rr_1 \cot \frac{A}{2} \).