Step 1: Combine the left-hand side using a common denominator.
Given:
\[
\frac{k}{kx + 3} + \frac{3}{3x - k} = \frac{12x + 5}{(kx + 3)(3x - k)}
\]
Take LHS:
\[
\frac{k(3x - k) + 3(kx + 3)}{(kx + 3)(3x - k)} = \frac{12x + 5}{(kx + 3)(3x - k)}
\]
Step 2: Expand the numerator on the left-hand side.
\[
k(3x - k) = 3kx - k^2
\]
\[
3(kx + 3) = 3kx + 9
\]
Add them:
\[
(3kx - k^2 + 3kx + 9) = 6kx - k^2 + 9
\]
So,
\[
\frac{6kx - k^2 + 9}{(kx + 3)(3x - k)} = \frac{12x + 5}{(kx + 3)(3x - k)}
\]
Step 3: Equate numerators.
\[
6kx - k^2 + 9 = 12x + 5
\]
Group like terms:
\[
6kx - 12x = k^2 - 4
\Rightarrow x(6k - 12) = k^2 - 4
\]
Solve for \( x \):
\[
x = \frac{k^2 - 4}{6k - 12}
\]
This is a rational expression in terms of \( k \), so for the quadratic equation \( kx^2 - 7x + 3 = 0 \) to have rational roots, the discriminant must be a perfect square.
Step 4: Use discriminant condition for rational roots.
The discriminant of \( kx^2 - 7x + 3 \) is:
\[
\Delta = (-7)^2 - 4(k)(3) = 49 - 12k
\]
For roots to be rational, \( \Delta \) must be a perfect square.
Try small integer values of \( k \) that satisfy earlier equation:
Try \( k = 1 \):
\[
x = \frac{1 - 4}{6 - 12} = \frac{-3}{-6} = \frac{1}{2}
\Rightarrow \text{One rational value found, try in quadratic}
\]
Check discriminant:
\[
\Delta = 49 - 12(1) = 37 \quad \text{(not a perfect square)}
\]
Try \( k = 2 \):
\[
x = \frac{4 - 4}{12 - 12} = \frac{0}{0} \Rightarrow \text{Not defined}
\]
Try \( k = 4 \):
\[
x = \frac{16 - 4}{24 - 12} = \frac{12}{12} = 1
\]
Discriminant:
\[
\Delta = 49 - 12(4) = 49 - 48 = 1 \quad \text{(perfect square)}
\Rightarrow \text{Rational roots}
\]