If $ \frac{k}{kx + 3} + \frac{3}{3x-k}= \frac{12x + 5}{(kx + 3)(3x - k)} $, then both the roots of the equation $ kx^2 - 7x + 3 = 0 $ are:
Show Hint
To determine the nature of roots, use the discriminant \( \Delta = b^2 - 4ac \). If \( \Delta \) is a perfect square and coefficients are rational, the roots are rational. Substitute values if necessary to test feasibility.