Step 1: Use the binomial expansion formula for the expansion of \( (1 - 3x)^{\frac{-1}{4}} \). The binomial expansion of \( (1 + u)^n \) is given by:
\[
(1 + u)^n = 1 + nu + \frac{n(n-1)}{2!}u^2 + \frac{n(n-1)(n-2)}{3!}u^3 + \cdots
\]
where \( u = -3x \) and \( n = \frac{-1}{4} \).
Step 2: We need to find the coefficient of \( x^2 \). The general term of the expansion is:
\[
T_k = \binom{n}{k} u^k
\]
For the \( x^2 \) term, we substitute \( k = 2 \), \( u = -3x \), and \( n = \frac{-1}{4} \).
\[
T_2 = \binom{\frac{-1}{4}}{2} (-3x)^2 = \binom{\frac{-1}{4}}{2} 9x^2
\]
Step 3: The binomial coefficient \( \binom{\frac{-1}{4}}{2} \) is calculated as:
\[
\binom{\frac{-1}{4}}{2} = \frac{\left( \frac{-1}{4} \right) \left( \frac{-5}{4} \right)}{2!} = \frac{\frac{5}{16}}{2} = \frac{5}{32}
\]
Step 4: Therefore, the coefficient of \( x^2 \) is:
\[
\frac{5}{32} \times 9 = \frac{45}{32}
\]