We are given:
\[
\sin(\alpha + \beta) = 5 \sin(\alpha - \beta)
\]
Using the addition and subtraction formulas for sine:
\[
\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta
\]
\[
\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta
\]
Substitute these into the given equation:
\[
\sin\alpha \cos\beta + \cos\alpha \sin\beta = 5(\sin\alpha \cos\beta - \cos\alpha \sin\beta)
\]
Simplify:
\[
\sin\alpha \cos\beta + \cos\alpha \sin\beta = 5 \sin\alpha \cos\beta - 5 \cos\alpha \sin\beta
\]
Rearrange the equation:
\[
(1 - 5) \sin\alpha \cos\beta = (-5 - 1) \cos\alpha \sin\beta
\]
\[
-4 \sin\alpha \cos\beta = -6 \cos\alpha \sin\beta
\]
Thus,
\[
\frac{\sin\alpha}{\cos\alpha} = \frac{3}{2}
\]
So, we get \( \tan(\alpha) = \frac{3}{2} \). This can be used to simplify the expression \( \frac{\sin 2\beta}{5 - \cos 2\beta} \) to \( \tan(\alpha - \beta) \).
Thus, the answer is \( \boxed{\tan(\alpha - \beta)} \).