To find the multiplicative inverse of a complex number \( z \), multiply numerator and denominator by its conjugate:
\[
\frac{1}{z} = \frac{\bar{z}}{|z|^2}
\]
Step 1: Let \( z = a + ib \), where \( a, b \in \mathbb{R} \).
Then, the multiplicative inverse of \( z \), denoted by \( z^{-1} \), satisfies:
\[
z \cdot z^{-1} = 1
\]
Step 2: Multiply numerator and denominator by conjugate of \( z \):
\[
\frac{1}{z} = \frac{1}{z} \cdot \frac{\bar{z}}{\bar{z}} = \frac{\bar{z}}{z\bar{z}} = \frac{\bar{z}}{|z|^2}
\]
Hence, the multiplicative inverse of \( z \) is:
\[
\frac{\bar{z}}{|z|^2}
\]