We are given the following two equations:
\[
\sin x \cosh y = \cos \theta \quad \text{and} \quad \cos x \sinh y = \sin \theta
\]
Step 1: Square both equations.
Squaring the first equation:
\[
\left( \sin x \cosh y \right)^2 = \cos^2 \theta
\]
\[
\sin^2 x \cosh^2 y = \cos^2 \theta \quad \text{(Equation 1)}
\]
Squaring the second equation:
\[
\left( \cos x \sinh y \right)^2 = \sin^2 \theta
\]
\[
\cos^2 x \sinh^2 y = \sin^2 \theta \quad \text{(Equation 2)}
\]
Step 2: Add the two equations.
Now add Equation 1 and Equation 2:
\[
\sin^2 x \cosh^2 y + \cos^2 x \sinh^2 y = \cos^2 \theta + \sin^2 \theta
\]
Since \( \cos^2 \theta + \sin^2 \theta = 1 \), we get:
\[
\sin^2 x \cosh^2 y + \cos^2 x \sinh^2 y = 1
\]
Step 3: Use the identity for hyperbolic functions.
We know the identity:
\[
\cosh^2 y - \sinh^2 y = 1
\]
Thus, the expression \( \sin^2 x + \cosh^2 y \) is equal to 2.
Therefore, the value of \( \sin^2 x + \cosh^2 y \) is \( \boxed{2} \).