The value of the following expression is:
\[
\cos \left( \frac{\pi}{2^2} \right) \cdot \cos \left( \frac{\pi}{2^3} \right) \cdot \cos \left( \frac{\pi}{2^4} \right) ... \cdot \cos \left( \frac{\pi}{2^{10}} \right)
\]
Show Hint
For products of cosines, the formula \( \prod_{k=1}^{n} \cos\left( \frac{\pi}{2^k} \right) = \frac{\sin\left( \frac{\pi}{2^n} \right)}{2^{n-1}} \) is useful.