Question:

The value of the following expression is: \[ \cos \left( \frac{\pi}{2^2} \right) \cdot \cos \left( \frac{\pi}{2^3} \right) \cdot \cos \left( \frac{\pi}{2^4} \right) ... \cdot \cos \left( \frac{\pi}{2^{10}} \right) \]

Show Hint

For products of cosines, the formula \( \prod_{k=1}^{n} \cos\left( \frac{\pi}{2^k} \right) = \frac{\sin\left( \frac{\pi}{2^n} \right)}{2^{n-1}} \) is useful.
Updated On: May 9, 2025
  • \( \frac{\sin\left( \frac{\pi}{2^{10}} \right)}{512} \)
  • \( \frac{\csc\left( \frac{\pi}{2^{10}} \right)}{512} \)
  • \( \frac{\sin\left( \frac{\pi}{2^{10}} \right)}{1024} \)
  • \( \frac{\csc\left( \frac{\pi}{2^{10}} \right)}{1024} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The product of cosines follows a known formula: \[ \prod_{k=1}^{n} \cos\left( \frac{\pi}{2^k} \right) = \frac{\sin\left( \frac{\pi}{2^n} \right)}{2^{n-1}} \] For \( n = 10 \), this becomes: \[ \prod_{k=1}^{10} \cos\left( \frac{\pi}{2^k} \right) = \frac{\sin\left( \frac{\pi}{2^{10}} \right)}{2^{9}} = \frac{\sin\left( \frac{\pi}{2^{10}} \right)}{512} \] Thus, the answer is \( \frac{\csc\left( \frac{\pi}{2^{10}} \right)}{512} \).
Was this answer helpful?
0
0