The product of cosines follows a known formula:
\[
\prod_{k=1}^{n} \cos\left( \frac{\pi}{2^k} \right) = \frac{\sin\left( \frac{\pi}{2^n} \right)}{2^{n-1}}
\]
For \( n = 10 \), this becomes:
\[
\prod_{k=1}^{10} \cos\left( \frac{\pi}{2^k} \right) = \frac{\sin\left( \frac{\pi}{2^{10}} \right)}{2^{9}} = \frac{\sin\left( \frac{\pi}{2^{10}} \right)}{512}
\]
Thus, the answer is \( \frac{\csc\left( \frac{\pi}{2^{10}} \right)}{512} \).